Central limit theorems for random evolutions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Theorems for Random Evolutions with Explicit Error Estimates*

We think of x (t, y) as the position of a particle at time t when its velocity is v (t). The process x (t, y) is the simplest example of a random evolution: one-dimensional motion at a constant but random velocity determined by the state of the Markov chain associated with v(t). We denote by P(y,~i){" }, Y real, v~sA, the probability laws of the joint process (x (t, y), v (t)), where v (0)= v/....

متن کامل

Central Limit Theorems for Dependent Random Variables

1. Limiting distributions of sums of 'small' independent random variables have been extensively studied and there is a satisfactory general theory of the subject (see e.g. the monograph of B.V. Gnedenko and A.N. Kolmogorov [2]). These results are conveniently formulated for double arrays Xn k (k = 1, . . . , kn ; n = 1, 2, . . . ) of random variables where the Xn k (k = 1, . . . , kn), the rand...

متن کامل

Central Limit Theorems for Random Polytopes

Let K be a smooth convex set. The convex hull of independent random points in K is a random polytope. Central limit theorems for the volume and the number of i dimensional faces of random polytopes are proved as the number of random points tends to infinity. One essential step is to determine the precise asymptotic order of the occurring variances.

متن کامل

Quenched Central Limit Theorems for Random Walks in Random Scenery

When the support of X1 is a subset of N , (Sn)n≥0 is called a renewal process. Each time the random walk is said to evolve in Z, it implies that the walk is truly d-dimensional, i.e. the linear space generated by the elements in the support of X1 is d-dimensional. Institut Camille Jordan, CNRS UMR 5208, Université de Lyon, Université Lyon 1, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne...

متن کامل

Exponential inequalities and functional central limit theorems for random fields

We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed Brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1994

ISSN: 0304-4149

DOI: 10.1016/0304-4149(94)90064-7